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Figure 1. EmbodiedScan provides a multi-modal, ego-centric 3D perception dataset with massive real-scanned data and rich annotations
for indoor scenes. It benchmarks language-grounded holistic 3D scene understanding capabilities for real-world embodied agents.

Abstract

In the realm of computer vision and robotics, embod-
ied agents are expected to explore their environment and
carry out human instructions. This necessitates the abil-
ity to fully understand 3D scenes given their first-person
observations and contextualize them into language for in-
teraction. However, traditional research focuses more on
scene-level input and output setups from a global view.
To address the gap, we introduce EmbodiedScan, a multi-
modal, ego-centric 3D perception dataset and benchmark
for holistic 3D scene understanding. It encompasses over
5k scans encapsulating 1M ego-centric RGB-D views, 1M
language prompts, 160k 3D-oriented boxes spanning over
760 categories, some of which partially align with LVIS,
and dense semantic occupancy with 80 common categories.
Building upon this database, we introduce a baseline frame-
work named Embodied Perceptron. It is capable of process-

ing an arbitrary number of multi-modal inputs and demon-
strates remarkable 3D perception capabilities, both within
the two series of benchmarks we set up, i.e., fundamental
3D perception tasks and language-grounded tasks, and in
the wild. Codes, datasets, and benchmarks will be avail-
able at https://github.com/OpenRobotLab/EmbodiedScan.

1. Introduction

Consider an embodied agent operating in an indoor environ-
ment. It commences its journey devoid of any prior knowl-
edge about the scene, guided only by an initial instruction.
As it begins to explore, it recognizes objects in context and
acts with goals along with language interaction. In this pro-
cess, a commonly needed, fundamental perception capabil-
ity is to establish a holistic 3D scene understanding given
ego-centric observations. This understanding operates at
the scene level, covers both object semantics and scene ge-
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Dataset #Scans #Imgs #Objs #Cats #Prompts Ego Capture 3D Annotations

Replica [51] 35 - - - - ✗ ✗
NYU v2 [14] 464 1.4k 35k 14 - ✓ ✗

SUN RGB-D [50] - 10k - 37 - Mono. Box
ScanNet [15, 44] 1513 264k 36k 18 52k [9] ✓ Seg., Lang.
Matterport3D [7] 2056 194k 51k 40 - Multi-View Seg.

3RScan [57] 1482 363k - - - ✓ Seg.
ArkitScenes [3] 5047 450k 51k 17 - ✓ Box
HyperSim [43] 461 77k - 40+ - Mono. & Syn. Box
EmbodiedScan 5185 890k 160k 762 970k ✓ Box, Occ., Lang.

Table 1. Comparison with other 3D indoor scene datasets. “Cats” refers to the categories
with box annotations for the 3D detection benchmark. EmbodiedScan features more than
10× categories, prompts, and the most diverse annotations. The numbers are still scaling
up with further annotations. Mono./Syn./Lang. means Monocular/Synthetic/Language.

Figure 2. Dataset composition. Embodied-
Scan is composed of three data sources and
has similar scans, images, objects, and cate-
gories in each of them.

ometry, and can be grounded in language descriptions.
Nonetheless, subtle but significant discrepancies exist

between this expectation and research problems examined
within the computer vision community. Most previous
studies have primarily revolved around scene-level input
and output problems from a global view [15, 39, 45], i.e.,
taking reconstructed 3D point clouds or meshes as inputs
and predicting 3D object bounding boxes or segmenting
point clouds. Regarding data, earlier datasets targeting ego-
centric RGB-D inputs are either too small [14, 50] or lack
comprehensive annotations [7, 57] to support the aforemen-
tioned research. It is also not feasible to generate such real-
istic views by rendering from the existing imperfect meshes.
On the other hand, since we cannot trivially obtain the re-
construction of a new environment, models trained with
scene-level input are not directly applicable in practice.

To bridge this divide, we introduce a multi-modal, ego-
centric 3D perception dataset and benchmark for holistic 3D
scene understanding, termed EmbodiedScan, aimed at facil-
itating real-world embodied AI applications (Fig. 1). This
dataset exploits existing large-scale 3D scene datasets [7,
15, 57] but re-purposes them for continuous scene-level per-
ception from the first-view RGB-D streams. Unlike pre-
vious works that offer only point segmentation labels with
limited semantics, we employ a SAM-assisted [24] pipeline
to annotate objects with oriented 3D bounding boxes and
generate language prompts on top. Consequently, Embod-
iedScan provides more than 5k scans, nearly 1M ego-centric
RGB-D images, and multi-modality annotations, covering
3D oriented boxes with more than 160k instances span-
ning over 760 categories, dense semantic occupancy with
80 common categories, and 1M language descriptions fo-
cusing on spatial relationships among objects.

Built upon this dataset, we devise a baseline framework
named Embodied Perceptron for ego-centric 3D perception.
It accepts RGB-D sequences and texts as inputs and mani-
fests scalability and generalizability to any number of views
input with encoders shared across different tasks. With the
encoded 2D and 3D features, we employ dense fusion and
isomorphic multi-level fusion across them guided by the
perspective projection to produce 3D scene and object rep-

resentations, which are further processed to decode occu-
pancy and 3D box predictions. The derived 3D representa-
tions can be further integrated with text embeddings for 3D
visual grounding, thus supporting language-grounded ap-
plications.

We establish two series of benchmarks on Embodied-
Scan: 1) fundamental 3D perception benchmarks focusing
on traditional tasks, including 3D detection and semantic
occupancy prediction under different input settings, and 2)
a language-grounded scene understanding benchmark with
3D visual grounding as a preliminary exploration. Exper-
imental results validate the effectiveness of our baseline
model on EmbodiedScan and demonstrate its generalization
ability in the wild. Detailed analysis further underscores
the value of EmbodiedScan and highlights the primary chal-
lenges posed by this new setup.

2. Related Work

3D Scene Datasets. The development of 3D scene un-
derstanding has benefited from large-scale, high-quality
datasets like KITTI [18] and SUN RGB-D [50]. These
foundational datasets have paved the way for subsequent
larger and more diverse collections targeting indoor [7, 15,
43, 57] and driving scenes [5, 8, 37, 52]. However, com-
pared to autonomous driving datasets, those meant for in-
door scenes still lack variety in terms of scenes and object
diversity (Tab. 1). In contrast, EmbodiedScan provides a
large amount of multi-modal data with much richer anno-
tations. Furthermore, it differs by placing an emphasis on
the ego-centric perspective within its setup, a feature often
overlooked in previous works [3, 15].

Except for these conventional dataset works,
Omni3D [4] integrates urban and indoor datasets for
monocular 3D detection. Our focus, however, lies in indoor
scenes due to their unique challenges but has a larger
amount of data and annotations, e.g., more than 3× images
and categories with more than 10 instances. In addition,
we offer a comprehensive exploration of more general
problems for ego-centric 3D perception, such as continuous
perception and visual grounding. Other embodied AI
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(a) SAM-Assisted Oriented 3D Bounding Boxes Annotation. (b) 3D Boxes and Language Prompt Statistics.

(c) Instance Statistics (Increase w.r.t. ScanNet). (d) Occupancy Statistics.

Figure 3. EmbodiedScan annotation and statistics. (a) UI for 3D box annotation. We select keyframes and generate their SAM masks
with corresponding axis-aligned boxes. With simple clicks, annotators can create 3D boxes for target objects and further adjust them with
reference in three orthogonal views and images. (b) Small boxes (< 1m3) increase more & prompt statistics. objs/avg./des. refer to
objects/average/descriptions. (c) We show the number of instances per category (300 classes). For categories that exist in ScanNet, we plot
the absolute increase and observe a significant improvement. (d) We plot the occupancy distribution for each category and see a different
word cloud distribution. These two clouds show different aspects, occupied space vs. number of instances, of this dataset.

datasets like HM3D [41, 62] and HSSD [23] provide
ample interaction opportunities but can suffer from poor
transferability to real-world scenarios due to their imperfect
meshes or synthetic data. Conversely, EmbodiedScan is
based on real-scanned RGB-D images, offering a more
realistic playground for model training.
3D Object Detection & Occupancy Prediction. 3D detec-
tion and occupancy prediction, as fundamental tasks in 3D
perception, focus on different aspects of 3D scene under-
standing. The former focuses on recognizing foreground
objects through a sparse and efficient representation - a
set of 3D cuboids corresponding to instances of interest -
while the latter offers a dense, structured pattern that ben-
efits downstream planning. The research community has
developed solutions ranging from single-modality, such as
LiDAR-based [25, 32, 39, 45, 47, 63, 65] or camera-only
approaches [31, 46, 49, 58–60], to multi-modality tech-
niques [28, 33, 40, 56, 64]. Recently, occupancy as a rep-
resentation, due to its potential in handling unknown se-
mantics and irregular object shapes, has gained more atten-
tion [6, 21, 27, 48, 54, 61]. Given their distinctive focuses,
we selected these two tasks to form the fundamental 3D per-
ception track on EmbodiedScan.

Previous works on indoor scenes mainly centered around
3D detection with limitations in object orientations, seman-
tic categories, and input format [32, 39, 45]. In practice, a
model is expected to perceive the environment during ego-
centric exploration, ultimately providing a holistic under-
standing inclusive of rich semantics, scene geometry, and

object poses. To this end, EmbodiedScan and our proposed
framework, Embodied Perceptron, provide this necessary
data foundation and baseline methodology.
Language-Grounded 3D Scene Understanding. Lan-
guage plays a crucial role in human-computer interaction,
heightened by recent advances in Large Language Mod-
els (LLMs). Its integration with 3D scene understanding
is vital for future embodied agents. Past research first ex-
plored 3D visual grounding [1, 9, 20, 22] and established
new benchmarks including 3D dense captioning [10, 11],
open-vocabulary 3D segmentation [17, 38, 53] and detec-
tion [35, 67]. This paper focuses on 3D visual grounding
first, with plans to expand language annotations and bench-
marks in the future. Our visual grounding benchmark aligns
with the multi-view setting of the basic 3D perception track,
taking multiple ego-centric RGB-D images as input, and in-
cludes tenfold more complex prompts in our challenging
dataset.

3. Dataset
This section presents the dataset construction, including
data processing and annotation, and shows the statistics.

3.1. Data Collection & Processing

Ego-Centric Sensor Data Collection. Considering there
have been readily available 3D indoor scene scans from
existing datasets, we start with integrating those provid-
ing ego-centric RGB-D captures with corresponding cam-
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era poses. Given the compatibility of ScanNet [15],
3RScan [57], and Matterport3D [7], we select the high-
quality part with necessary annotations to form the initial
version of EmbodiedScan (Fig. 2). ARKitScenes [3], pos-
sessing different data organization, depth sensors, and an-
notations, is considered for future inclusion.
Frame Selection & Scene Division. Although these
datasets all have RGB-D data, the data format, sampling
frequency, and relationships among viewpoints are differ-
ent. See more details in the appendix. We first unified the
format into a general multi-view case to fit Matterport3D
by adding randomness when loading images but maintain-
ing sequential continuity for ScanNet and 3RScan during
inference. Our model can thus handle both temporal and
randomly captured multi-view images. Additionally, we di-
vided building-scale scenes of Matterport3D into regions
based on official annotation, selecting corresponding im-
ages with depth points falling into the region. As for dif-
ferent sampling rates of images in ScanNet and 3RScan
videos, we sample one keyframe per 10 frames for ScanNet
and keep all the images for 3RScan. The uniform sampling
is generally in line with the actual situation.
Global Coordinate System. A global coordinate system is
necessary to aggregate multi-view observations and serve
as a reference for outputs. We follow the convention of
ScanNet, deriving a system with the origin around the cen-
ter of the scene, the horizontal plane lying on the floor and
axes aligning with walls [39]. This post-processing harmo-
nizes the data distribution, slightly improving performance
on benchmarks. Practical applications may not have such a
prior global system or vary according to observations, pos-
ing another interesting problem for future exploration.

3.2. Annotation

We provide three types of annotations - 3D bounding boxes,
semantic occupancy, and language descriptions - each serv-
ing to enrich different aspects of scene understanding.
3D Bounding Boxes. Following standard definitions [3, 4],
a cuboid is defined by its 3D center, size, and ZXY Euler
angle orientation. We used the Segment Anything Model
(SAM) [24] and a customized annotation tool based on [26]
(Fig. 3a) to address limitations in existing 3D box annota-
tions, i.e., lack of orientation and small object annotations.
It supports the conventional functionality of annotating 3D
boxes with orientation in three orthographic views. Fur-
thermore, we sample several keyframes with clear imaging
according to the camera pose changes and ensure they cover
non-overlap regions and most objects to generate SAM
masks and axis-aligned boxes for further adjustment. We
work with an annotation team and check the quality of all
the labels in the end. Each scene takes around 10-30 min-
utes to annotate, varying with the scene complexity.
Semantic Occupancy. Semantic occupancy necessitates

accurate boundaries across semantic regions without con-
sidering object pose or recalling all the objects, so the orig-
inal point cloud segmentation annotations were more suit-
able to be used for deriving occupancy ground truth. For
each voxel, we assigned the category with the most points as
the semantic label for that cell. A compromise between per-
ception granularity and computational efficiency resulted
in 40 × 40 × 16 occupancy maps in the perception range
[−3.2m ∼ 3.2m,−3.2m ∼ 3.2m,−0.78m ∼ 1.78m]
along the X-Y (horizontal) plane and Z (vertical) axis.
Language Descriptions. Given updated 3D bounding
boxes annotated with orientations, we derive the language
prompts that describe the spatial relationships among ob-
jects following SR3D [1]. They serve as the prompt input
to the language-grounded perception models for performing
3D visual grounding. Due to increased object density after
annotation, identifying unique objects became more chal-
lenging. To overcome this, we combined multiple spatial-
relationship prompts to exclusively ground objects. See
more samples in the appendix.

3.3. Statistics

Vocabulary Construction. During labeling, we ask anno-
tators to write semantic categories in an open-vocabulary
manner. This was efficient and suited the complex, large-
vocabulary dataset and can provide natural annotations for
future open-world research. To sort out these labels, we
used Sentence-BERT [42] to cluster similar categories with
text embeddings, match them to WordNet nodes, and finally
revise and merge them manually. The vocabulary shares
common categories with COCO (50/69 indoor classes) and
LVIS (550/1203).
Instance Statistics. We first show the instances of different
categories in Fig. 3c. Our dataset contains over 760 cat-
egories, covering common objects in our daily life. More
than 288 categories have over 10 instances, and around 400
categories have more than 5 instances. These numbers are
20× higher than most previous works with 3D box anno-
tations and 3× higher than ScanNet instance segmentation
annotations with more than 5 instances. There is also a no-
table increase in object numbers of small boxes and differ-
ent categories (Fig. 3b and 3c). We remove four categories,
{wall, ceiling, floor, object} in our 3D detection benchmark
and divide the remaining 284 categories into three splits,
{head, common, tail} with {90, 94, 100} classes.
Occupancy Statistics. Semantic occupancy statistics
(Fig. 3d) reveal the space occupied by different categories,
relevant for navigation and motion planning. We chose the
first 80 categories for our occupancy prediction benchmark
based on distribution and significance in downstream tasks.
Language Prompts Statistics. Generated language
prompts following SR3D fall into five types of spatial
object-to-object relations: Horizontal Proximity, Vertical
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Figure 4. Embodied Perceptron accepts RGB-D sequence with any number of views along with texts as multi-modal input. It uses classical
encoders to extract features for each modality and adopts dense and isomorphic sparse fusion with corresponding decoders for different
predictions. The 3D features integrated with the text feature can be further used for language-grounded understanding.

Proximity, Support, Allocentric, and Between. If a scene
has between 2 and 6 instances of a certain category, these
categories are considered valid target categories. If a
scene has a single instance of a category, it is selected as
the anchor category. The training/validation set contains
801711/168322 language prompts, nearly 10 times larger
than the original SR3D datasets (Fig. 3b and Tab. 1).

4. Embodied Perceptron
Given this dataset, we can take multi-modality input, in-
cluding RGB images, point clouds derived from depth maps
as well as language prompts, to extract multi-modal repre-
sentations and perform different downstream tasks. This
section provides a baseline, namely Embodied Perceptron,
with a unified framework and customized design for holistic
3D scene understanding from ego-centric views.
Framework Overview. The framework includes a multi-
modal 3D encoder to extract object & scene representa-
tions and sparse & dense decoders for various downstream
tasks. In addition, we customize the output’s parameteriza-
tion and training objectives to fit the formulation of oriented
3D bounding boxes in the sparse decoder.

4.1. Multi-Modal 3D Encoder
As shown in Fig. 4, the multi-modal 3D encoder first has
separate encoders for different modalities - ResNet50 [19]
and FPN [29] (optional) for 2D images, Minkowski
ResNet34 [12] for point clouds, and BERT [16] for texts.
After extracting these features, we further fuse and process
them into sparse or dense features for different downstream
tasks. Next, we first present how we aggregate multi-view

inputs and then introduce different fusion approaches for
dense and sparse feature extraction.
Scalability for Input Views. Contrasting with prior works,
our framework can accept any number of RGB-D views,
making it adaptable and generalizable to varying input or-
ders and quantities. We conveniently aggregate different
depth map views by transforming the point clouds into a
global coordinate system, downsampling as needed. For
multiple images, we query corresponding 2D features us-
ing perspective projection from 3D points, averaging them
to maintain permutation invariance. This technique allows
consistent feature updates during ego-centric exploration.
Theoretically, voxel features could be updated by merging
the volume feature at frame t with the incremental feature
from RGB-D input at frame t+1. In practice, we accommo-
date any number of views as batch-wise samples for acceler-
ating training and evaluation. Our model demonstrates no-
table scalability, where fewer views (e.g., 20) may be used
for memory efficiency during training, while more views
(e.g., 50) can enhance performance during inference.
Dense Fusion. Previous works typically integrate the color
and coordinates of points at the input stage, like “paint-
ing” [56], or form multi-modality dense BEV features for
concatenated fusion [28, 33]. The latter way suits our oc-
cupancy prediction baseline and thus we adopt the straight-
forward dense fusion on the pre-defined grid, which shares
the same resolution with the ground truth. We construct
feature volume by projecting grid points onto a 2D feature
map post-FPN, then consolidate it with 3D features den-
sified from sparse voxel features. For object detection, we
argue that concurrent multi-modality fusion across different
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Table 2. Continuous and multi-view 3D object detection benchmark on EmbodiedScan.

Methods Input Large-Vocabulary Head Common Tail
AP25 AR25 AP50 AR50 AP25 AR25 AP25 AR25 AP25 AR25

Camera-Only RGB 12.80 34.61 4.25 13.07 17.40 44.79 7.64 24.22 0.03 3.09
Depth-Only Depth 17.16 51.40 10.52 25.75 21.39 61.14 13.27 41.58 2.74 20.91

Multi-Modality RGB-D 19.07 51.56 11.57 28.15 23.54 60.23 15.80 44.99 1.24 17.74

ImVoxelNet [46] RGB 6.15 20.39 2.41 6.31 10.96 34.29 4.12 15.40 2.63 9.21
VoteNet [39] Depth 3.20 6.11 0.38 1.22 6.31 12.26 1.81 3.34 1.00 1.83
FCAF3D [45] Depth 9.07 44.23 4.11 20.22 16.54 61.38 6.73 42.77 2.67 24.83
+our decoder Depth 14.80 51.18 8.77 27.46 25.98 67.12 10.85 50.08 5.72 32.85

+painting RGB-D 15.10 51.32 8.64 26.66 26.23 67.53 11.39 50.64 5.80 32.13
Ours RGB-D 16.85 51.07 9.77 28.21 28.65 67.51 12.83 50.46 7.09 31.52

feature levels is more effective.
Isomorphic Multi-Level Multi-Modality Fusion. For-
mally, the input aggregated points P ∈ RNp×3 (first vox-
elized) and Ni images as I ∈ RNi×H×W are processed
via a Minkowski ResNet and a shared 2D ResNet re-
spectively. This extracts multi-level sparse voxel features
Vk ∈ RCk×NVk on K levels and image features Fs ∈
RCs×Hs×Ws on S levels. In practice, these two ResNets
produce 4 levels of features, for both point clouds and im-
ages, denoted as isomorphic multi-modality encoders.

In dense fusion, we filter Fs with an upsampling FPN
to derive a feature map Fup with stride = 4 and use it to
construct the feature volume for fusing with V4. For the
sparse case, we use multi-level features as seeds instead of
a single dense feature map to predict 3D objects. The ini-
tial attempt of still query features from Fup or raw images
I for these seeds is unstable due to inconsistent features for
fusion and confusing gradients back-propagation. Thus, we
leverage the isomorphic architecture for level-based projec-
tion and feature fusion, i.e., Vk queries the corresponding
image features of Fk, which empirically shows a better and
more stable performance. This method enables multi-level
multi-modality feature fusion compared to the “painting”
approach and ensures the consistency of features and gradi-
ents across different network levels and modalities.
Vision-Language (VL) Fusion. Given the multi-level
sparse visual features FS

k and text features from the text en-
coder, we use a multi-modal fusion transformer model [22,
67] for vision-language information interactions. Each
transformer layer uses a self-attention block to refine sparse
visual features and exploit spatial relationships. Then visual
and text features interact in cross-modal attention blocks.
This interaction guides updated sparse grounding features
FG to be context-aware for subsequent prediction.

4.2. Sparse & Dense Decoder

Given multi-modal features from typical encoders, we em-
ploy separate fusion streams for sparse and dense tasks.
This results in four levels of sparse voxel features FS

k from
isomorphic sparse fusion and a single dense feature FD for
decoding and predictions. These are then processed to ob-
tain 3D box and occupancy predictions.
Sparse Decoder for 3D Boxes Prediction. Using the

multi-level fused features FS
k , we upsample them as in

FCAF3D, appending classification, regression, and center-
ness prediction heads for 3D object detection. In particular,
to fit the oriented 3D box output, we add a 6D rotation rep-
resentation [66] into original regression targets, ultimately
decoded as 3D centers c, 3D sizes l, and Euler angles Θ.
Training objectives include the original classification loss,
centerness loss, and a disentangled Chamfer Distance (CD)
loss for eight corners [4, 49]. Specifically, we use one of
three groups of decoded predictions, {3D centers, 3D sizes,
and Euler angles}, while setting the other two with ground
truths to compute three corner losses. For example, given
3D sizes and Euler angles ground truth, we can derive the
corner loss between the predicted B and the ground truth
box B̂ yielded by 3D center prediction errors:

Lc = LCD(B(c, l̂, Θ̂), B̂) (1)

Together with the corner loss derived by the overall pre-
dicted bounding boxes Lpred, We balance these losses with
preset weights and use them to replace the original box loss:

Lloc = λcLc + λlLl + λΘLΘ + λpredLpred (2)

We set λc = λl = λΘ = 0.2 and λpred = 0.4 to highlight
the importance of the overall prediction, which performs
well empirically. The target assignment strategy and post-
processing during inference also follow FCAF3D [45].
Dense Decoder for Occupancy Prediction. With the dense
feature FD, we use a 3D FPN [46] to aggregate multi-
level features and produce multi-scale occupancy predic-
tions. Since the task requires more powerful low-level fea-
tures for fine detail understanding, predictions at each scale
are thus supervised with decayed half weights from high to
low resolution [6]. We use cross-entropy loss and scene-
class affinity loss [61] for training. During inference, we
only use the high-resolution output for prediction.
Sparse Decoder for 3D Visual Grounding. Grounding
features FG updated after each transformer layer are fed
into the prediction heads sharing the same architecture as
those used for 3D detection. All prediction head outputs
in each layer are supervised during training for stability
and improved performance. An additional contrastive loss
aligns the visual feature with target text prompts, ensuring
the features of a target text token are closer to corresponding
visual features and further from other visual or text tokens.
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Table 3. Continuous and multi-view occupancy prediction benchmark on EmbodiedScan. “refri.” means “refrigerator”.
Methods Input mIOU empty floor wall chair cabinet door table couch shelf window bed curtain refri. plant stairs toilet

Camera-Only RGB 10.43 39.09 34.10 30.24 26.46 9.49 25.53 41.60 35.19 16.22 20.45 24.46 19.80 26.01 17.26 1.83 29.78
Depth-Only Depth 14.44 73.91 66.22 56.13 49.96 15.70 24.37 56.84 55.35 30.55 26.66 42.81 30.81 33.01 21.71 6.21 45.35

Multi-Modality RGB-D 20.79 73.50 63.64 62.30 54.60 19.96 48.99 61.10 69.76 39.86 34.62 54.83 54.45 48.90 41.22 7.97 63.52

OccNet [48] RGB 8.07 37.15 46.90 25.63 20.94 13.17 18.40 26.81 22.86 13.59 13.49 26.75 22.92 17.15 17.07 4.77 33.60
SurroundOcc [61] RGB 9.10 38.54 46.17 23.55 23.04 13.60 19.15 27.79 22.88 13.11 13.72 24.32 18.89 13.58 14.77 7.83 34.71

Camera-Only RGB 10.48 40.45 41.25 27.19 26.16 15.50 20.30 30.82 26.70 15.01 14.33 29.17 23.30 16.99 15.98 6.17 42.57
Depth-Only Depth 15.56 69.92 60.52 51.74 49.44 23.08 24.33 45.77 43.52 29.74 23.02 39.04 41.22 17.42 19.58 25.79 60.45

Multi-Modality RGB-D 19.97 71.21 64.92 55.00 52.04 27.35 33.97 47.93 46.26 31.87 27.98 46.58 46.56 24.05 39.01 24.40 67.79

Table 4. Monocular 3D object detection benchmark on EmbodiedScan.

Methods Input 20 Common Classes chair cabinet table bin couch bed bathtub toiletAP25 AR25 AP50 AR50

FCOS3D [58] RGB 8.93 27.96 0.91 5.00 27.15 1.14 6.21 10.23 9.47 18.38 6.31 40.51
ImVoxelNet [46] RGB 18.95 52.74 1.81 7.10 46.70 4.63 18.10 17.82 20.39 41.51 10.14 65.70

VoteNet [39] Depth 14.30 31.44 1.68 5.14 54.00 2.41 19.53 14.72 21.80 45.58 13.49 68.16
ImVoteNet [40] RGB-D 19.63 34.32 3.88 8.82 56.72 2.88 29.00 21.96 27.77 56.94 37.56 74.08
FCAF3D [45] Depth 25.70 78.53 5.73 20.26 65.91 6.47 26.64 34.93 22.50 53.68 26.38 71.90
+our decoder Depth 28.16 84.50 4.92 20.69 63.85 6.62 32.34 38.96 31.61 60.33 38.17 75.57

+painting RGB-D 30.19 83.93 5.74 21.90 66.39 7.41 33.66 42.86 32.24 60.04 41.31 77.59
Ours RGB-D 34.28 85.03 12.61 32.25 69.47 10.01 37.29 45.17 31.67 63.27 50.63 80.39

5. Benchmark

Our benchmark has three categories based on data sam-
ples: scene-based, view-based, and prompt-based. Scene-
based benchmarks mean the samples are based on differ-
ent scenes, covering continuous and multi-view perception.
View-based benchmarks use ego-centric views for tasks like
monocular 3D detection. Lastly, samples of 3D visual
grounding are based on constructed language prompts. De-
tailed splits will be discussed in each benchmark.

For metrics, we use the 3D IoU-based average preci-
sion (AP) with thresholds of 0.25 and 0.5 for 3D detec-
tion and visual grounding. We also provide average recall
(AR) for reference. For occupancy prediction, we employ
the mean Intersection of Union (mIoU) as a performance
measure. Due to the space limitation, please refer to the
appendix for implementation details of different baselines,
and more quantitative and qualitative results including an
”in-the-wild” evaluation demo.

5.1. Fundamental 3D Perception Benchmarks

Continuous 3D Perception. As opposed to driving scenar-
ios, indoor scene understanding is typically in an enclosed
space, making it important to fully leverage multi-view
cues formed by RGB-D sequence and continuously main-
tain an overall scene-level representation. Thus, we design
this new benchmark involving sequential views for perceiv-
ing covered 3D regions. Models are trained and evaluated
scene-wise with 3930/703/552 scans allocated for train-
ing/validation/testing. To accelerate the training and evalu-
ation, we construct N data samples with 1 ∼ N views from
N sampled views per scan. Here, N = 10 during training
with random view sampling, while in evaluation, N = 50
with fixed views. Corresponding instances and occupancy
truths are obtained by combining pre-computed visible in-
stance IDs and occupancy masks of selected views. If a cat-

Table 5. Multi-view 3D visual grounding benchmark. “In-
dep/Dep” refer to “View-Independent/Dependent”. Easy/Hard and
Indep/Dep have a ratio of 80%/20% and 78%/22%.

Methods Input Overall Easy Hard Indep Dep
AP25 AP25 AP25 AP25 AP25

ScanRefer [9] RGB-D 12.85 13.78 9.12 13.44 10.77
BUTD-DETR [22] RGB-D 22.14 23.12 18.23 22.47 20.98

L3Det [67] RGB-D 23.07 24.01 18.34 23.59 21.22
Ours RGB-D 25.72 27.11 20.12 26.37 23.42

egory lacks instances, it is removed when calculating mAP
and mIoU. Given this new setup, we primarily offer three
baselines with different input modalities (Tab. 2 and 3).
Continuous 3D Object Detection. As anticipated, both RGB
and depth features significantly impact this task, leading to
superior results of our RGB-D approach (Tab. 2). The per-
formance of the depth-only model closely mirrors the multi-
modality approach, indicating depth’s dominance in 3D per-
ception. Our method of constructing multi-modal features
based on sparse voxel features also aligns with this intuition.
Low performance on tail categories suggests dataset size in-
fluences performance, warranting future enhancement.
Continuous Semantic Occupancy Prediction. This bench-
mark offers comprehensive results including mIoU and IoU
for common classes. Unlike the detection benchmark, there
is a notable gap between the depth-only and RGB-D base-
line. This might be due to the former’s limited semantic un-
derstanding capability, especially evident in categories like
door and curtain, which are similar to walls in shape. On
such a task that requires more fine-grained understanding,
the depth sensor’s weakness is enlarged. Meanwhile, depth
plays a crucial role in predicting empty space, floor, and
wall, while RGB information substantially improves pre-
diction for most categories.
Multi-View 3D Perception. Unlike continuous settings,
multi-view 3D perception does not predefine the order of
views but provides all views to the model for scene-level
results. This setting was studied previously [46], so we first
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Table 6. Ablation with conventional settings.
Oriented Multi-View AP25 AR25 AP50 AR50

✗ ✗ 70.17 90.46 54.58 75.66
✓ ✗ 61.87 90.31 47.30 73.93
✓ ✓ 59.95 87.92 43.33 69.95

Table 7. Real vs. rendered images on ScanNet.
Train Val Overall Head Common Tail

Render Render 22.11 33.01 16.44 6.74
Render Real 18.72 27.02 14.85 6.25

Real Real 21.98 32.91 17.18 5.05

reproduce common methods on our benchmark.
Multi-View 3D Object Detection. We implement base-
lines including ImVoxelNet [46] with RGB-only input and
VoteNet [39] and FCAF3D [45] with depth-only input
(Tab. 2). Additional dimensions are added to predict Eu-
ler angles with a simple L1 loss on their cosine values, but
it yields underwhelming results. Substituting this with our
decoder design markedly improves performance. Further
using point cloud input painted for FCAF3D with RGB-D
input slightly underperforms our baseline. Nevertheless, all
models have substantial potential for improvement, demon-
strating the challenges of this new dataset and setup.
Multi-View Semantic Occupancy Prediction. We implement
two popular baselines from autonomous driving bench-
marks, OccNet [48] and SurroundOcc [61] (similar to TPV-
Former [21]). Their performance slightly lags behind our
camera-only baseline. Variants of our baselines exhibit a
performance trend akin to embodied benchmarks.
Monocular 3D Perception. Finally, the basic ego-centric
setting is monocular 3D perception, specifically 3D detec-
tion, where each data sample comprises a single RGB-D
frame and corresponding visible 3D boxes. Scan splits
are used to extract frames as data samples, resulting in
689k/115k/86k images for the training/validation/testing.
Monocular 3D Object Detection. This is more challenging
than multi-view due to the absence of stereo geometric cues
and truncated object views in indoor scenes, so the perfor-
mance is significantly reduced in large-vocabulary settings.
Hence, we first create a benchmark for 20 common cate-
gories (Tab. 4), observing a larger AP-AR gap for top meth-
ods because of difficulties predicting accurate 3D boxes
from partial views. Similarly, our method outperforms oth-
ers, providing a solid baseline for future studies.

5.2. Language-Grounded Benchmark

Multi-View 3D Visual Grounding. Our benchmark intro-
duces language into the perception loop to foster interac-
tive 3D scene representation learning. With comprehensive
instance annotations, our benchmark presents more com-
plex prompts and grounding cases than previous works. As
an initial step, this setup takes multi-view RGB-D images
as input without considering differing prompt timestamps.
The goal is to ground the object described by the language
prompt in the scene using information from different ego-

Table 8. Benefits from training with EmbodiedScan.

Train Val Overall Head Common Tail
ScanNet ScanNet 20.28 29.81 15.57 6.40

Ours ScanNet 23.02 33.82 18.09 6.57
ScanNet Ours 10.92 21.10 8.06 1.78

Ours Ours 16.85 28.65 12.83 7.09

centric views. Ground-truth detection boxes are not pro-
vided as candidates for grounding during evaluation, which
can better validate end-to-end 3D visual grounding ability
than the original SR3D [1]. Data sample splits align with
previous benchmarks’ 3D scan splits.

We reimplement classic methods like ScanRefer [9],
BUTD-DETR [22], and L3Det [67] (Tab. 5). Our base-
line outperforms all due to the strong multi-modal encoder.
However, the performance remains much lower than previ-
ous works, partly due to changes in input format and annota-
tions, which we will analyze next. Further challenges arise
from handling more categories and small objects, making
the grounding task more complex in parsing input prompts
and predictions. Addressing these new challenges in this
classical task would be promising for future research.

5.3. Analysis

Finally, we make further analysis to connect EmbodiedScan
to current progress in computer vision.
Axis-aligned vs. Oriented Boxes. We start with the
18-class detection performance of FCAF3D on ScanNet
(Tab. 6). First, we change the annotations to oriented 3D
boxes and adapt with our decoder. We find a significant
drop in performance, indicating that the orientation estima-
tion makes this task more challenging. We need to explore
a better method to represent and predict the object pose.
Reconstructed Point Cloud vs. Multi-View RGB-D. Sub-
sequently, replacing the reconstructed point clouds with the
aggregated ones from multi-view depth maps has minor ef-
fects on AP25 but heavily impacts AP50 (Tab. 6), implying
that the accuracy of reconstructed point clouds is superior
to raw depth maps. Therefore, integrating reconstruction
techniques in perception loops shows potential.

Next, we study the gap between the real and rendered
images, and the benefits from training with EmbodiedScan.
We do the comparison with our multi-modality baseline on
the large-vocabulary multi-view 3D detection benchmark.
Real Capture vs. Rendering. As shown in Tab. 7, apart
from the significant visual difference between real and ren-
dered images (Fig. 1), the model’s performance also has a
remarkable decrease when transferring models trained with
rendered images to the real world, particularly when the an-
notations are sufficient (5.99% AP drop on head categories
and 5.89% AP lower than models trained with real images.)
Benefits from EmbodiedScan. Finally, we also quanti-
tatively evaluate the benefits of training models with our
large-scale EmbodiedScan (Tab. 8). As expected, when
training our models with EmbodiedScan, we observed a sig-
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nificant improvement in both ScanNet (2.74% AP) and the
overall validation split (5.93% AP), particularly 4.01% AP
and 7.55% AP increase on head categories.

6. Conclusion
This paper introduces EmbodiedScan, a multi-modal per-
ception suite aiming for language-grounded holistic 3D
scene understanding from ego-centric views. We construct
a large-scale dataset with diverse sensor data and multi-
modal annotations, including 3D oriented boxes, seman-
tic occupancy and language descriptions. Based on this
dataset, we propose a baseline framework capable of han-
dling any number of views input, using a unified multi-
modal encoder and task-specific decoders. We establish
benchmarks for basic and language-grounded 3D percep-
tion. Experiment results highlight our work’s value and re-
veal new challenges in this setup. We believe Embodied-
Scan can bring opportunities in embodied 3D perception
and may also have a broader impact in related fields with
the massive data and rich annotations.

A. Implementation Details
In the main paper, we focus on the overall design of our
baseline framework and the benchmark results. Here, we
further provide the implementation details of Embodied
Perceptron and other baselines on our benchmark.

A.1. Embodied Perceptron

Input. Except for the monocular task, given the memory
usage of different tasks, we set different numbers of input
images during training and inference. Specifically, we set
the number of input images to 20 and 50 for training and
inference of multi-view 3D detection and visual grounding
experiments while reducing the number to 10 for training
continuous 3D detection models. For occupancy experi-
ments, we set the number to 10 and 20 for training and in-
ference. In addition, due to different resolutions of images
from different source datasets, we resize them to 480× 480
for unification and conduct corresponding transformations
when computing the projection from points to images.

For depth maps, after converting them to point clouds,
we first sample the points to limit their maximum number
to 100k [45]. Then we voxelize them and feed them into the
sparse convolutional networks. We set the voxel size to 0.01
meters for 3D detection following the convention of previ-
ous works [45]. In contrast, since we only use the last-level
voxel feature (64× downsampled) to construct the feature
volume, the voxel size is set to 0.16/64=0.0025 meters to
ultimately predict the 40 × 40 × 16 occupancy (the output
voxel size is 0.16 meters).
Multi-Modal 3D Encoder. As mentioned in the main pa-
per, we use the classical encoders for different modalities at

the beginning, i.e., a shared ResNet50 [19] for multi-view
images, MinkResNet34 [12] for point clouds derived from
depth maps, and RoBERTa-Base [30] for texts. Here, we re-
duce the base channels in ResNet to 16 to make it consistent
with MinkResNet34, resulting in {128, 256, 512, 1024}
multi-level feature channels after sparse fusion. In contrast,
for dense fusion, we keep the original setting of ResNet, use
FPN to enhance the 2D features (256 channels) to derive
the 3D feature volume, and finally concatenate it with the
densified last-level voxel feature V4 (512 channels), result-
ing in 768-channel dense feature for subsequent occupancy
prediction. For different outputs, the current encoder design
has shared separated encoders but minor differences during
fusion. How to further unify them and how it could bene-
fit multi-task training and pre-training would be intriguing
problems to be explored in the future.
Spare & Dense Decoder. We basically follow
FCAF3D [45] in 3D detection head designs but adapt it to
be compatible with oriented 3D boxes. It generates pre-
dictions based on sparse voxel seeds and assigns targets
to them according to several rules during training, such as
whether the voxel center is inside a box and assigning it
to the best feature level similar to FCOS [55, 58]. Please
see more details in its original paper. Here, all the compu-
tations regarding the distance between centers, points, and
six faces and box formulations mentioned in the main paper
are modified to fit the 3-DoF rotation version.

For the dense decoder, we first use a 3D FPN [46] to fil-
ter the 3D dense feature and compress the feature channel
to 128. The output multi-level features in three resolutions,
from 40× 40× 16 to 10× 10× 8, are fed into three occu-
pancy prediction heads, which share the same architecture,
a 3D convolutional layer with kernel size and stride set to
1, to produce the multi-scale results. The training objective
and loss are similar to SurroundOcc [61] for supervising
the multi-scale output. During inference, we only take the
high-resolution output as the final prediction.

For the visual grounding decoder, we adopt several trans-
former layers to fuse the 3D sparse feature and text feature.
Similar to GroupFree3D [32], we refine the position encod-
ing of an object candidate stage by stage. Specifically, we
predict the 3D box locations at each decoder layer, and the
predicted box location will be used to produce the updated
position encoding of the same query. The queries are up-
dated iteratively through ND = 6 decoder layers. Besides, to
achieve the contrastive loss mentioned in our original paper,
one visual projection layer and one text projection layer are
needed to project visual and text features to the same feature
space with channel 64 for alignment. The projection layer
consists of three linear layers. The contrastive loss aims to
learn the similarity of visual-text multimodal features, con-
sisting of two losses: Lv

con ensures the features of an object
query are closer to positive text token features and farther
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from other text tokens, and Lt
con ensures the features of a

target text token are closer to corresponding visual features
and farther from other visual tokens.

Lv
con=

k∑
i=1

− log

(
exp

(
o⊤
i ti/τ

)∑l
j=1 exp

(
o⊤
i tj/τ

)) , (3)

Lt
con =

l∑
i=1

− log

(
exp

(
t⊤i oi/τ

)∑k
j=1 exp

(
t⊤i oj/τ

)) , (4)

Lcon = Lv
con + Lt

con, (5)

where o and t are the object and text features after pro-
jection layers, and o⊤t/τ is their similarity. k and l are the
number of objects and words. ti is the positive word feature
of the i-th candidate object.
Training Parameters. For all the experiments, we only
use the pre-trained ResNet50 and RoBERTa provided by
PyTorch while training other modules randomly initialized
from scratch following end-to-end manners. The network
is trained using AdamW [34] optimizer, with β1 = 0.9,
β2 = 0.999. For continuous/multi-view/monocular 3D de-
tection, we use 8 GPUs with 1/4/8 training samples on each
to train the model for 96/120/24 epochs, setting the learn-
ing rate to 0.0002/0.001/0.0002 and weight decay to 0.0001.
For all the occupancy experiments, we use 8 GPUs with 1
training sample on each to train the model for 24 epochs,
setting the learning rate to 0.0001 and weight decay to 0.01.
Data Augmentation. Since the transformation of 3D boxes
is easier than occupancy, we only conduct input data aug-
mentations for 3D detection experiments. For continuous
and multi-view 3D detection, we randomly flip and apply
global transformations to the aggregated points, including
random rotation with angles in [−0.0873, 0.0873], random
scaling with a ratio in [0.9, 1.1] and random translation fol-
lowing a normal distribution with standard deviation 0.1,
but do not apply any augmentation to images. The rotate
and flip augmentations are removed for the view-dependent
3D visual grounding experiments. For monocular experi-
ments, we use the same augmentation settings while also
flipping 2D images for better performance.

A.2. 3D Detection Baselines

By default, our following re-implemented baselines use the
same input setup (such as the number of input views) and
backbone with Embodied Perceptron for consistent per-
formance comparison, e.g., ResNet50 for ImVoxelNet and
FCOS3D, MinkResNet34 for FCAF3D, etc. All the base-
line implementation starts with a basic adaptation for ori-
ented 3D box prediction, a simple L1 loss on the Euler an-
gles’ cosine values, and can smoothly change the decoder
formulation to ours for performance improvement, as men-
tioned in the main paper. We basically provide several key
hyperparameters as follows and all the models are trained to

fully converge. The re-implementation of baselines is based
on their official release on top of MMDetection3D [13] and
more details can be referred to our code release.
ImVoxelNet. We adapt its officially released code to fit
our dataset and experiments. For multi-view 3D detec-
tion, we set the grid range to [−3.2m ∼ 3.2m,−3.2m ∼
3.2m,−0.78m ∼ 1.78m] along the X-Y (horizontal) plane
and Z (vertical) axis and adopt a random origin shift aug-
mentation following a normal distribution with standard de-
viation [0.7, 0.7, 0] along these axes as in the original pa-
per. We use 8 GPUs with 1 training sample on each to
train the model for 36 epochs, setting the learning rate to
0.0001 and weight decay to 0.0001. For monocular 3D de-
tection, we change the range to [−3.2m ∼ 3.2m,−1.0m ∼
1.56m, 0.8m ∼ 7.2m] along the XYZ axis where Y and Z
correspond to the height and depth axis. We use 8 GPUs
with 4 samples on each to train the model for 12 epochs,
setting the learning rate to 0.0002 and the weight decay to
0.0001. All the backbones would use a 0.1× smaller learn-
ing rate as in the original implementation.
VoteNet. We follow the official version for 3D detection on
ScanNet and only change the orientation estimation to the
trivial version mentioned above. We derive the mean 3D
size of boxes according to our annotations for the partial
bin-based box coder setup. We use 8 GPUs with 4/8 sam-
ples on each to train the model for 180/12 epochs for multi-
view/monocular 3D detection and adopt data augmentations
for point clouds including random flip, rotation, scaling, and
translations, similar to our baseline. It was observed that
the performance decreased a lot when changing the original
multi-bin orientation estimation to the trivial one. It is also
challenging for the original classification and localization
design for our large-vocabulary setting. Therefore, how to
design a more effective head for such point-based methods
is an important problem to be explored afterward.
ImVoteNet. Since adapting ImVoteNet for multi-view
cases is non-trivial, we only implement it for monocular ex-
periments for comparison. Following the official implemen-
tation, we first train a Faster R-CNN with the amodal 2D
boxes derived from projected 3D boxes in the first stage and
then tune the overall framework in the second stage. Re-
lated hyperparameters are set similar to VoteNet. We use 8
GPUs with 2/16 training samples on each to train the model
for 8/24 epochs at the first/second stage, setting the learning
rate to 0.02/0.001 and the weight decay to 0.0001/0.01 with
the SGD/AdamW optimizer.
FCAF3D. FCAF3D is similar to our depth-only baseline,
with differences in network designs such as multi-modality
fusion and decoders. Thus, the hyperparameters are also set
similarly to our baselines, including the input, optimizers,
training epochs, and data augmentations.
FCOS3D. FCOS3D is a conventional baseline for monocu-
lar 3D detection with simple architecture designs. We fol-
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low the official implementation but change the backbone to
ResNet50 for consistency. We use 8 GPUs with 8 training
samples on each to train the model for 24 epochs, setting
the learning rate to 0.024 and the weight decay to 0.0001
with the SGD optimizer.

A.3. Occupancy Prediction Baselines

We follow the original implementation of OccNet [48] and
SurroundOcc [61] but change the BEV query according to
our settings to finally derive the 40 × 40 × 16 occupancy
in the range [−3.2m ∼ 3.2m,−3.2m ∼ 3.2m,−0.78m ∼
1.78m]. Besides, we take the RGB-D sequence input in
our setting as the multi-camera input in its original pa-
per (for autonomous driving). The learning rate is set to
0.0002/0.0001 and the weight decay is set to 0.01/0.01 for
the AdamW optimizer of OccNet and SurroundOcc. We
use 8 GPUs with 1 sample on each to train the model for
48 epochs. Following the official code, we also use a 0.1×
smaller learning rate for their backbone weights update.

A.4. Visual Grounding Baselines

ScanRefer. We implement ReferNet [9] based on our
adapted VoteNet and do not change other designs. We use
4 GPUs with 14 training samples on each to train the model
for 48 epochs. The learning rate is set to be 1e-3 and the
weight decay is set to 1e-5.
BUTD-DETR. We reimplement the BUTD-DETR in our
codebase and also change the orientation estimation to
achieve oriented 3D box prediction. Considering the large
vocabulary setting in our benchmark, we do not predict the
residual size of the 3D boxes based on their mean sizes cal-
culated according to the annotations. Instead, following the
original setting of BUTD-DETR, the essence of the visual
grounding task is not to predict the 3D box and its category,
but to predict the alignment score between one 3D box and
the input prompt. We directly predict the actual size of each
3D box. Besides, we keep the input of the box stream un-
changed as in its official implementation, i.e., a pre-trained
GroupFree3D detector is used to obtain 3D object box pro-
posals, which are sent into the box stream. We use 4 GPUs
with 24 training samples on each to train the model for 80
epochs. The learning rate of the backbone is set to be 1e-5,
the text encoder is frozen and the learning rate of the re-
maining parts is set to be 1e-4.
L3Det. L3Det is a cleaner architecture that is modified
based on BUTD-DETR, where the text and visual feature
fusion is conducted in the decoder. Similar to BUTD-
DETR, we change the orientation estimation to adapt to
the oriented 3D box prediction, and other components re-
main unchanged. We modify BUTD-DETR and reimple-
ment L3Det [67] as a cleaner architecture on top. The set-
tings for training and optimization are the same as those of
BUTD-DETR.

B. Dataset Details

B.1. Data Processing

Difference Among Source Datasets. In the main paper, we
mentioned that although the source datasets all have RGB-
D data, their data distributions have significant differences.
Specifically, ScanNet provides the raw RGB-D sequence
with the most frames (highest sampling frequency) and the
image resolution 1296×968. 3RScan uses a portrait screen
with image resolution 540 × 960 (but provides the image
with 90◦ rotation, resulting in 960 × 540) and has fewer
frames. Matterport3D directly provides general multi-view
images with image resolution 1280× 1024 instead of video
sequences to serve as the image modality of 90 building-
scale scenes. In the main paper, we have mentioned that
we unify the input as a general multi-view case and sample
ScanNet frames to make them consistent with the other two
datasets. In addition, we rescale the images to 480 × 480
to extract 2D features to unify the resolutions of inputs and
also force the 2D backbone to learn features robust to the
scale and rotations.

B.2. Annotation

Definition of Oriented 3D Boxes. As mentioned in the
main paper, we follow the typical definition of oriented 3D
boxes, including 3D center, 3D size, and three Euler an-
gles. This definition is naturally transferred from previous
research in 3D detection, from 7-DoF boxes in autonomous
driving to this 9-DoF version for any 3-DoF rotation. How-
ever, it still has some ambiguity in the definition of 3D sizes
and orientations. Because the definition of length, width,
and height is ambiguous, we define the 3D size as the length
along the XYZ axis, ∆x, ∆y, ∆z, to constitute the 3D size.
A potentially tricky problem is that we may have multiple
solutions with different combinations of this 3D size and
Euler angles for a specific oriented box. This is because
we do not pre-define the 3D size for each object to just
estimate the orientation, which is more similar to the set-
tings of 6D pose estimation. As a result, our 9-DoF defi-
nition is more suitable for the detection setting considering
that it should be more general for different objects from the
large-vocabulary categories, but at the same time essentially
can be reduced to a definition of boxes with eight vertices
and a single normal/unidirectional orientation. It may lose
other dimensions of orientation (compared to 6D pose) in-
formation, but in practice, such a unidirectional orientation
is enough for most objects, considering many of them are
symmetric. The discussion about such object representa-
tions and the corresponding evaluation metric design can be
important in future works.
Language Prompt Generation. When producing language
prompts, each prompt is designed to uniquely identify a tar-
get object within a 3D scan by establishing a distinct rela-
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tionship between the target and an adjacent object, referred
to as the “anchor”. Following SR3D [1], we use the fol-
lowing compositional template to construct the language
prompt:

⟨target class⟩ ⟨spatial relation⟩ ⟨anchor class(es)⟩

We present the five types of spatial-relation language
prompts to make this appendix self-contained: Horizon-
tal Proximity, Vertical Proximity, Support, Allocentric, and
Between [1]:
• Horizontal Proximity: The type of language prompt

shows the distance in the horizontal direction between the
target and anchor objects, which indicates how close or
far the target is from the anchor in the scene.

• Vertical Proximity: This prompt indicates the vertical
relationship between the target and anchor.

• Between: This prompt indicates there exists a target be-
tween the two anchors. Furthermore, we can obtain a
more precise description, such as the target being in the
middle of two anchors.

• Allocentric: Based on our new EmbodiedScan annota-
tion, each object will contain precise orientation infor-
mation. Based on the position vector between the target
and anchor, as well as the orientation vector of the anchor
object itself, we can easily determine whether the target
is in front/back/left/right of the anchor.

• Support: This prompt indicates that the target is either
supported by or supporting the anchor.
We generate each type of language prompt scene by

scene. Before prompt generation, we need to separately fil-
ter out classes that are suitable as targets and anchors. In
addition, for each scene, we need to further determine the
valid class as the following:
• A class is a valid class for a target if: 1) There must be

multiple objects of this class in the current scene. 2) The
number of objects of this class in the current scene cannot
exceed 6.

• A class is a valid class for an anchor if: 1) Objects of this
class are unique in the current scene. 2) The number of
objects of class in the current scene cannot exceed 6.

• Besides, an anchor can never belong to the same class as
the target and, as such, its distractors.
Next, we elaborate on detailed rules for the generation of

different spatial relationships:
• Allocentric: For each anchor, we traverse all the valid

target classes. For all the objects of a certain target class,
we calculate the positional vector between the target and
anchor objects. Combined with the anchor’s own orien-
tation vector, we determine whether the target is in front
of, behind, to the left, or to the right of the anchor. Note
that an allocentric language prompt will only be gener-
ated when there is only one object belonging to a certain
target class in a certain direction of this anchor.

Table 9. Spatial proximity statistics.
Horizontal Vertical Support Allocentric Between All

723477 16420 4812 216197 9135 970041

• Support and Vertical Proximity: For each anchor and
target object, we first calculate the Intersection over
Union (IoU) of the anchor and target in the XY plane.
If the IoU exceeds a certain threshold, we determine
whether the anchor and target can form a support relation-
ship based on a pre-defined list of supporter and supportee
categories. The positional relationship, above or below, is
judged based on the heights in the Z-axis direction.

• Horizontal Proximity: For each anchor, we traverse all
the valid target classes. For all the objects of a certain tar-
get class, we calculate their distances to the anchor object.
From these, we select the farthest and nearest objects to
construct a language prompt for each.

• Between: Unlike other types of prompts, this prompt re-
quires two anchors. We determine whether the target is
between two anchors based on their top view 2D bound-
ing boxes. Generally speaking, the target should be in the
same Z range for each of the two anchors and be away
from every other distractors by a certain distance.

B.3. Statistics

Complete Instance Statistics. We show the complete in-
stance distribution in Fig. 5 for reference. It can be observed
that it turns out a long-tailed distribution as expected and
shows obvious superiority over previous datasets regarding
the number of categories and instances.
Spatial Proximity Statistics. Here we first conduct a ba-
sic quantitative analysis of different categories of language
prompts. We find that in the generated prompts, descrip-
tions of Horizontal Proximity and Allocentric relationships
accounted for the vast majority, while Vertical Proximity
and Support only made up a small portion. This is consis-
tent with the fact that most objects in the 3D scene are pri-
marily distributed on the XY plane (horizontal direction).

In addition, we make further analysis of the prompt dis-
tribution and discover several reasonable statistic results:

1. For common objects such as tables, we find that in the
generated Support prompts, the ten most frequent objects
are book, lamp, jacket, paper, plant, bottle, plate, box, tele-
phone, and TV. By analyzing horizontal prompts, we find
that nearby objects often include window, door, couch, cab-
inet, curtain, bin, and chair. This is actually consistent with
our common sense, as tables are usually placed next to win-
dows and accompanied by chairs for people to sit.

2. For smaller objects like books, we find that in the gen-
erated prompts, Support prompts account for the majority.
Based on data analysis, books are usually placed on tables,
stands, desks, cabinets, boxes, and dressers.

3. In the generated prompts, there are certain categories
of objects usually appearing together within a scene. How-
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Figure 5. Complete instance distribution of EmbodiedScan.

ever, these objects are not common in our daily in-house
lives, such as menu, cube, ridge, panel, sack, crate, and
shovel.

4. We also discovered some fixed spatial relationships.
Some objects often appear in pairs. For example, mirrors
frequently appear above the sink, stool, cabinet, and socket
in the generated prompts. On the other hand, pictures are

often placed above the bed, couch, table, desk, toilet, and
cabinet.

These findings are small but interesting. We believe that
given such detailed instance annotations, further analyses
for the object distributions can reflect some common sense
regarding the daily object configurations. It would also pro-
vide useful guidance for AI-powered realistic 3D scene gen-
eration and design.

B.4. Data Examples

Oriented 3D Boxes. We show the comparison of previous
and current annotations in Fig. 6. Here, we highlight the dif-
ference in box orientations and new annotated small objects
in the provided two examples.
Complicated Language Prompts. Due to the fact that the
language descriptions generated in the new benchmark con-
tain more object categories, it is easier to generate prompts
with ambiguity. Although we tried our best to ensure that
the generated prompts have unique references through var-
ious restrictions during the generation procedure, this phe-
nomenon still exists in our later manual inspection. There-
fore, we randomly concatenate multiple generated language
prompts belonging to the same object to generate compli-
cated language prompts for auxiliary training. For example,
for one object with three generated language prompts: “find
the monitor that is closer to the door”, “the monitor that is
farthest from the windowsill” and “the monitor that is near
the fan”, we combine them to obtain the complicated lan-
guage prompt: “find the monitor that is closer to the door,
and it is farthest from the windowsill and near the fan.”

B.5. Clarifications

Dataset Comparison. First, we clarify several details in
Tab. 1 of the main paper. For a fair and clear comparison,
we modify some raw statistics of those datasets to make
them consistent with the criterion of our dataset. For exam-
ple, we do not show the number of objects for monocular
datasets such as SUN RGB-D and Hypersim because these
numbers can be inaccurate due to the potential repetitive
counting of objects across different frames. We normalize
the number of images from ScanNet by dividing its frame
numbers by 10 to keep its sampling frequency consistent
with ours. For categories, we only list the number of cat-
egories used for previous 3D detection instead of also in-
volving that for 3D instance segmentation to highlight the
much larger vocabulary of our 3D box annotations.

In addition, the number of language prompts shown in
the Table is from ScanRefer [9]. There are also other
annotations built upon ScanNet and we supplement these
works here. ReferIt3D [1] is another work concurrent to
ScanRefer but focuses on fine-grained 3D object identifi-
cation, providing 120k prompts including spatial reference
(SR3D) and natural reference (NR3D). ScanQA [2] targets
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(a) Box orientations. (b) Small objects (new boxes marked in yellow).

Figure 6. Comparison of previous (top) and our annotations (bottom).

the question-answering problem in 3D scenes and offers
41k question-answering pairs for ScanNet. SQA3D [36]
further highlights the role of “situation” in this problem,
resulting in 21k descriptions of 6.8k unique situations and
35k questions. All these works are built upon only ScanNet
and thus have limited scene diversity. Recently, to collect
large-scale 3D-text pairs for pre-training, 3D-VisTA [68]
generates 278k scene descriptions from existing 3D Vision-
Language tasks, templates, and GPT-3 from ScanNet and
3R-Scan as ScanScribe. It also randomly replaces objects
from Objaverse with the same class to enhance the scene
and object diversity, but at the same time, may yield a lit-
tle domain gap between the generated and real-scanned raw
data. In contrast, thanks to our comprehensive annotations
for objects, regarding both categories and object poses, and
more diverse scans, our preliminary version has a much
larger scale in the language descriptions, scaling up the
number to about 1M. Furthermore, due to the complicated
scenes and object distributions, the task also becomes more
challenging. We will continue to improve the existing lan-
guage annotations and add more content from other aspects
for holistic 3D scene understanding.

Test Set. We respect the copyright and license of all the
source datasets and only include the test set statistics for
scans and images in the main paper. For the annotations
of the test set, we connect with the official hosts and will
consider making a more complete version for future bench-
marks and challenges. Other related issues will also be ad-
dressed by clear communication and collaboration with the
official hosts before the data and models are released in the
future.

C. Supplementary Results
Due to the space limitation, we only list the main bench-
mark results and key ablation studies to demonstrate the
value of our dataset and the efficacy of our baseline. Here,
we further show more details about these results, supple-
ment more ablation studies, and visualize the predictions
qualitatively both on our dataset and in the real world.

C.1. Detailed Benchmark Results

3D Detection Results Per Category. First, we show the de-
tailed continuous and multi-view 3D detection performance
in Tab. 10 for categories that are common in the real world
and annotations. We can see that although these categories
have a large number of annotations, there are still some that
seem challenging for current models, such as pictures and
bottles. In addition, it can be observed that the improve-
ment brought by a better decoder for orientation estimation
(+our decoder) is mainly focused on those objects that have
significant differences between length and width, such as
pictures, doors, windows, shelves, towels, etc. It is a rea-
sonable phenomenon and reveals the importance of orien-
tation estimation in this setting. Finally, because we do not
list the 20 categories in the monocular 3D detection bench-
mark, we show the complete results in Tab. 11.

C.2. Supplementary Ablation Studies

Number of Views. As mentioned in the main paper, our
trained baseline is applicable to any number of views dur-
ing training and inference. Here, we show the ablation study
regarding the number of views used for training and infer-
ence in Fig. 7. Specifically, taking 3D detection as the ex-
ample, we change the inference views for continuous and
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Table 10. Continuous and multi-view 3D detection results per category.
Methods mAP25 chair picture door pillow cabinet table book window box shelf plant bin curtain bottle lamp couch towel sink

Camera-Only 12.80 72.39 1.30 26.63 25.07 21.08 55.03 2.81 6.16 8.25 25.37 28.20 42.66 8.84 0.01 12.87 75.90 0.46 26.93
Depth-Only 17.16 80.68 6.88 29.77 40.89 22.25 67.83 1.28 31.61 10.02 45.93 29.90 28.52 6.01 2.55 31.85 70.14 45.08 67.16

Multi-Modality 19.07 80.73 15.59 35.45 51.46 25.22 62.14 4.56 24.82 10.45 45.98 48.32 30.07 14.60 2.02 34.62 78.12 40.72 65.68

ImVoxelNet [46] 6.15 69.76 0.41 10.79 15.38 14.43 45.63 1.77 4.82 5.50 13.36 12.96 29.96 9.79 0.01 15.44 54.51 1.94 22.76
VoteNet [39] 3.20 64.92 0.00 0.01 3.30 3.24 30.42 0.12 0.05 0.91 0.02 1.84 17.17 0.39 0.00 5.55 33.37 0.11 10.88
FCAF3D [45] 9.07 86.98 2.42 9.01 44.54 21.03 54.20 15.02 10.71 7.13 24.65 23.22 56.93 17.86 0.47 27.11 63.56 11.80 63.74
+our decoder 14.80 90.30 17.01 42.82 49.22 36.01 67.20 20.94 30.26 9.83 41.93 30.40 70.51 39.44 1.13 35.33 76.99 36.01 72.58

+painting 15.10 90.79 20.25 45.70 52.30 36.98 67.42 18.55 31.23 11.30 40.98 33.14 70.28 38.27 0.91 34.50 73.70 30.45 73.43
Ours 16.85 88.81 19.57 42.36 54.65 38.78 67.12 20.59 33.69 12.92 40.97 35.48 71.18 43.85 1.52 37.36 77.65 31.74 72.92

Table 11. Monocular 3D detection results per category.
Methods mAP25 chair pillow cabinet table lamp couch desk stand bed backpack

FCOS3D [58] 8.93 27.15 2.23 1.14 6.21 1.92 9.47 12.09 11.13 18.38 5.52
ImVoxelNet [46] 18.95 46.70 5.93 4.63 18.10 6.58 20.39 24.78 19.58 41.51 14.64

VoteNet [39] 14.30 54.00 1.65 2.41 19.53 3.55 21.80 19.13 4.89 45.58 4.21
ImVoteNet [40] 19.63 56.72 2.10 2.88 29.00 10.01 27.77 23.13 12.68 56.94 10.93
FCAF3D [45] 25.70 65.91 23.19 6.47 26.64 17.87 22.50 31.64 25.03 53.68 28.24
+our decoder 28.16 63.85 28.68 6.62 32.34 14.19 31.61 30.81 27.27 60.03 32.43

+painting 30.19 66.39 28.28 7.41 33.66 18.23 32.24 35.64 29.69 60.04 37.92
Ours 34.28 69.47 31.64 10.01 37.29 19.73 31.67 39.07 32.01 63.27 37.89

Methods mAP25 bathtub ottoman dresser bin toilet refri. stove microwave monitor computer
FCOS3D [58] 8.93 6.31 1.38 4.54 10.23 40.51 6.92 4.03 5.60 3.25 0.57

ImVoxelNet [46] 18.95 10.14 9.63 9.98 17.82 65.70 18.11 15.92 14.93 8.26 5.80
VoteNet [39] 14.30 13.49 7.60 0.53 14.72 68.16 0.96 1.35 0.16 1.26 1.08

ImVoteNet [40] 19.63 37.56 9.14 1.87 21.96 74.08 1.21 9.50 2.12 2.24 0.66
FCAF3D [45] 25.70 26.38 15.76 4.35 34.93 71.90 13.88 4.29 9.95 21.57 9.79
+our decoder 28.16 38.17 21.85 7.28 38.96 75.57 16.25 7.78 10.31 6.13 13.04

+painting 30.19 41.31 20.23 7.16 42.86 77.59 16.12 9.56 10.76 14.04 14.68
Ours 34.28 50.63 25.59 9.54 45.17 80.39 24.44 14.53 19.96 19.77 23.65

multi-view settings and record the performance change in
Fig. 7a and 7b. We can see that it has a relatively minor in-
fluence on the continuous setting because the ground truth
also changes as the visible instances become fewer when
reducing the number of inference views. For multi-view
experiments, it affects the performance only when the num-
ber of views is too small (e.g., < 20), but it is more ro-
bust than the simple painting baseline, potentially benefiting
from the stronger multi-modality fusion. Finally, similar to
inference, it is also better to use more views for training but
would saturate when using more than 20 views (Fig. 7c).
Therefore, setting the number of training views to 20 is a
good trade-off between training costs and performance.

Dense Fusion. Here, we provide more comparison results
with other RGB-D baselines for dense occupancy predic-
tion. Taking the multi-view occupancy prediction as an ex-
ample, we re-implement the painting baseline as the detec-
tion experiments and observe a much lower performance, as
shown in Tab. 12. We conjecture it is because the painting
loses much more dense information with such sparse feature
extraction, resulting in such a larger gap from our dense fu-
sion method. As for the alternative choices for dense fusion,
we first attempt to voxelize the space with 0.16m voxels and
use a MinkUNet to produce the sparse voxel feature for sub-
sequent fusion and dense prediction. It turns out that fine-
grained partition is necessary at the beginning. Besides, if
removing the FPN to make the 2D feature extraction more

lightweight, we cannot obtain the final competitive perfor-
mance either.

Sparse Fusion. However, the FPN is not necessary for
sparse fusion, especially considering the optimization prob-
lem encountered in the 3D detection baseline. Furthermore,
except for the unstable training problem mentioned in the
main paper, our baseline is also much more computationally
efficient than the alternative implementations, which keep
the FPN or paint the points with image features. Our final
baseline costs only ∼25G of memory with the reduction of
2D feature channels and removing the FPN, compared to
∼59G of memory used in other approaches.

Sparse Decoder. The basic comparison between the sim-
ple L1 loss for Euler angles and our final decoder has been
shown in the main paper. Here, we elaborate more on the
ablation results of several design details in Tab. 13. We first
compare the results of different combination methods for
the corner losses and see that the weighted disentangled loss
shows the best performance, compared to “w/o decouple”,
“simple summation”, and “average”. In addition, taking the
size of boxes into consideration and normalizing the corner
losses by their sizes cannot bring improvement in the final
performance.

Apart from the corner loss, another straightforward ap-
proach is to implement a pseudo-3D-IoU loss for these
methods. Specifically, since the computation of 3D IoU
among 9-DoF boxes is still heavy and non-differentiable,
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(a) Continuous 3D detection with different num-
bers of inference views.

(b) Multi-view 3D detection with different num-
bers of inference views.

(c) Multi-view 3D detection with different num-
bers of training views.

Figure 7. Performance changed with the number of training and inference views.

Table 12. Ablation studies for dense fusion.
Methods Input mIOU empty floor wall chair cabinet door table couch shelf window bed curtain refri. plant stairs toilet
Painting RGB-D 20.33 77.45 70.49 57.58 55.11 31.51 22.29 55.61 47.75 40.27 28.16 50.32 41.52 19.14 19.66 13.64 45.43

MinkUNet RGB-D 24.53 71.10 63.41 56.19 49.99 35.05 37.16 50.96 46.87 38.30 33.56 54.97 41.49 30.20 35.89 12.77 64.56
MinkResNet (w/o FPN) RGB-D 21.16 77.45 70.81 57.09 55.44 30.99 23.49 55.31 49.64 40.59 30.65 48.58 38.96 19.10 22.37 6.77 58.57

MinkResNet (Ours) RGB-D 27.65 77.57 71.04 62.12 57.30 38.31 41.09 56.79 50.72 46.06 38.75 56.24 46.38 29.47 40.52 17.44 68.95

Table 13. Ablation studies of designs for sparse decoder.

Method mAP25 mAP50 Head25 Common25 Tail25
w/o Decouple 20.14 11.89 30.71 14.06 6.16

Decouple (sum.) 18.03 9.98 27.16 12.85 5.86
Decouple (avg.) 21.50 11.30 32.13 17.62 3.71

+Norm by 3D Size 20.67 11.39 30.68 16.20 5.28
Decouple (weigh.) 21.70 12.53 31.77 16.89 6.77
7-DoF IoU Loss 21.51 14.43 32.21 16.03 6.22
+ Corner Loss 22.13 13.95 32.60 16.82 7.08

Table 14. Performance with different training data.

Train Val Overall Head Common Tail
ScanNet ScanNet 20.28 29.81 15.57 6.40
+3RScan ScanNet 21.41 31.61 17.07 5.35

+Matterport3D ScanNet 23.02 33.82 18.09 6.57
ScanNet EmbodiedScan 10.92 21.10 8.06 1.78
+3RScan EmbodiedScan 13.91 25.25 10.69 3.76

+Matterport3D EmbodiedScan 16.85 28.65 12.83 7.09

we approximate the 3D boxes as 7-DoF ones with only
the yaw part in the axis-aligned coordinate system. This
“hack” method shows outstanding performance, especially
in mAP50, and can be further enhanced by combining the
corner loss. Therefore, IoU-based loss is a design more
faithful to the final metric and worthy of further study for
the general 9-DoF case.

Performance with Different Training Data. During the
procedure of scaling up data and annotations, we also test
the model’s performance on ScanNet and our final vali-
dation set. We can find a performance improvement that
seems to be linear with respect to the number of scans (1.5k-
3k-5k scans from ScanNet to EmbodiedScan), especially
for objects with plenty of annotations (“Head” categories).
We would continue collecting the RGB-D scan data and
annotations to further push the model’s performance to a
higher level, towards the usage in practice and real-world
embodied AI.

C.3. Qualitative Results

We visualize the prediction results on EmbodiedScan in
Fig. 8. From top to bottom, we plot the predictions of con-
tinuous 3D detection and occupancy prediction, monocular
3D detection, and multi-view 3D visual grounding. From
this visualization, we can have a feeling about different per-
ception output formats and how our models perform on our
dataset. We can observe that the continuous perception can
keep most previous predictions and fix some of them with
the exploration. In addition, the localization of 3D visual
grounding can be more accurate than the classical 3D detec-
tion for the target object considering it only needs to predict
a single bounding box.

C.4. In-the-Wild Test Demo

Finally, we test our trained model in the wild. It shows de-
cent performance in our test cases without cherry-picking,
even with a different RGB-D sensor (Kinect) in different en-
vironments potentially having significant domain gaps from
the training data. We visualize the prediction results in our
demo video.

D. Demo Video

To provide a summary of our paper and key contributions,
we made a short demo video, covering the overview of
our dataset and methodology, more visualization of the
annotation tool and perception results, to give a more
intuitive understanding of our work. Please see the
video with more details on our project page http://tai-
wang.github.io/embodiedscan.
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Figure 8. Qualitative results of different tasks on EmbodiedScan.
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